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I n  developed laminar flow in stationary curved ducts there is, in addition to the two- 
vortex secondary flow structure first analysed by Dean (1927), another solution 
branch with a four-vortex secondary flow. These two branches have recently been 
shown to be joined by a third branch, but stability characteristics and the possible 
presence of additional branches have yet to be described. In this paper orthogonal 
collocation is used in conjunction with continuation techniques to characterize the 
bifurcation structure for symmetric flows. The two- and four-vortex solutions are 
stable to symmetric disturbances, while the recently reported branch joining them is 
unstable. A more systematic exploration of the parameter space than has hitherto 
been reported is performed by examining the morphogenesis of the bifurcation 
structure within the general framework of properties described by Benjamin (1978). 
The starting point is the ‘perfect’ problem of flow in an infinite curved slit, which 
bifurcates to give rise to a cellular structure. Addition of ‘stickiness’ a t  the cell 
boundaries turns each pair of cells into a curved duct of rectangular cross-section 
which, by a geometry change, leads to the curved circular tube. For the perfect 
problem a large number of solution branches are present, but the addition of 
stickiness turns most of them into isolae which vanish before the no-slip limit is 
reached. The solution branches that remain include, in addition to the three 
described previously, another solution family not connected to the other one. This 
family comprises two branches, both four-vortex in character and unstable to 
symmetric disturbances. 

1. Introduction 
The pressure-driven laminar flow of an incompressible Newtonian fluid in a curved 

tube of circular cross-section was first considered by Dean (1927, 1 9 2 8 ~ ) .  Since then, 
a substantial body of experimental, theoretical and numerical work has accumulated 
dealing with the problem of viscous flow in curved ducts of various cross-sections ; 
the flows in all of them are qualitatively similar a t  low flow rates, with Dean’s results 
providing a good picture. Laminar flow through the tube is accompanied by the 
development of a secondary flow consisting of a pair of counter-rotating vortices, 
giving rise to  helical streamlines. The secondary flow is caused by the action of the 
centrifugal force driving the fluid towards the outer wall of the pipe, near which it 
is slowed down by viscous forces. The fluid pushed to the outer wall then moves 
inward along the walls until it reaches the inner bend, from where it repeats its cyclic 
motion. 

The detailed character of the flow can be significantly more complex than that 
described by Dean, even in the limit of small curvature for which his development 
is valid. The system is characterized by a single dimensionless parameter, today 
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FIGURE 1 .  Axial velocity contours and two-vortex secondary flow streamlines. (a) D = 1 ; 
( b )  500; ( e )  5000. 

known as the Dean number D. A number of variants exist (Van Dyke 1978; Berger, 
Talbot & Yao 1983), but all vary as &Re, with 8 the curvature and Re the Reynolds 
number. The Dean number provides a measure of the importance of inertial and 
centrifugal forces relative to viscous forces, and since secondary flows result from the 
interaction of centrifugal and viscous forces, the Dean number provides an estimate 
of their strength. This effect may be seen in figure 1, which shows axial velocity 
contours and secondary flow streamlines computed by the procedure discussed in $3  ; 
these results are in excelient agreement with those reported previously (e.g., Dean 
1927, 1 9 2 8 ~ ;  McConalogue & Srivastava 1968; Collins & Dennis 1975; and many 
other contributors, with a comprehensive review presented by Berger et al. 1983, and 
more recently by It6 1987). For small values of D the flow field is roughly symmetric 
about a line through the centre of the duct parallel to  the axis about which the tube 
is coiled (figure l a ) .  As D is increased the axial velocity contours and the secondary 
flow streamlines tend to become distorted and the locations of the maximum in axial 
velocity and of the centre of the secondary flow vortex move towards the outer wall 
(figure 1 b) .  At even larger values of D ,  the vortex centre moves back toward the inner 
wall of the tube (figure l c ) ,  with boundary layers developing near the walls of the 
pipe while the core appears to be inviscid (Barua 1963). 
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Flow in curved ducts of other cross-sections have similar characteristics, but an 
additional feature is the existence of a four-vortex solution reported for rectangular 
ducts (Cheng & Akiyama 1970; Joseph, Smith & Adler 1975; De Vriend 1981; 
Winters & Brindley 1984; Shanthini & Nandakumar 1986; Winters 1987; Soh 1988) 
and for semicircular ducts (Masliyah 1980; Nandakumar & Masliyah 1982). A four- 
vortex flow has also been observed experimentally by flow visualization in 
rectangular ducts by Cheng, Nakayama & Akiyama (1979) and in semicircular ducts 
by Masliyah (1980). This feature was subsequently described for circular ducts by 
Dennis & Ng (1982) and Nandakumar & Masliyah (1982) for values of D > 956; 
Cheng, Inaba & Akiyama (1985) verified the numerical predictions experimentally 
by flow visualization. These studies did not, however, resolve the issue of how the 
two- and four-vortex flows are related, although Nandakumar, Masliyah & Law 
(1985), in a paper dealing with bifurcation in steady laminar mixed convection flow 
in horizontal ducts, pointed out the similarities with the problem of flow in curved 
pipes, and suggested that instead of one critical Dean number, there should be a 
lower and an upper critical value of the flow parameter. This would define a region 
of coexistence of the two solutions, with only a four-vortex flow pattern existing 
above the upper critical value and only the two-vortex one below the lower critical 
value. 

The objectives of the present work were to elucidate the relationship between the 
two solution branches, and to obtain a more complete picture of bifurcation 
phenomena, including the possible existence of additional solutions and the stability 
of solutions. Although these goals were indeed accomplished, we became aware after 
submitting this paper for review that several important features of the relationship 
had already been reported. Winters & Brindley (1984), in a preliminary report 
dealing mainly with ducts of rectangular cross-section, identified a solution branch 
linking the two- and four-vortex branches, as suggested (subsequently) by 
Nandakumar et al. (1985). An expanded treatment of the bifurcation structure, but 
only for ducts of rectangular cross-section, was presented by Winters (1987). For 
circular ducts, Yang & Keller (1986a, b) verified the existence of multiple solutions 
and, in fact, reported four folds and hence five solution branches. Their conjecture 
was that the problem has an infinite number of possible solutions, exhibiting 2n- 
vortex character. Furthermore, they stressed the need for more accurate calculation 
in order to elucidate the rule of formation of new solution branches. They did not 
determine the stability characteristics of their solution branches. 

Thus although some of the features of flow in curved ducts we set out to 
characterize had been described previously, several issues remain unresolved. This 
paper addresses these issues using a computational approach in which multiple 
solution branches may be expected to be located more systematically than in 
previous studies of flow in curved ducts. 

2. Outline of approach 
A more complete characterization of flow in curved ducts requires a systematic 

approach for exploring the parameter space. For this we make use of the work of 
Benjamin (1978), whose discussion deals both with the generic properties of flow 
bifurcations and with morphogenesis of flow patterns as flow or geometric parameters 
change. The results apply to solutions of the Navier-Stokes equations in a finite 
domain. 

Benjamin treats the generic properties by assuming that, for any given geometry, 
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the flow is characterized by a single parameter ; he uses the Reynolds number, but 
for flow in a curved duct of small curvature the Dean number serves the same purpose. 
The Navier-Stokes equations then have, for all finite D ,  a t  least one solution. For 
sufficiently small D there is a unique, unconditionally stable (primary) solution, 
while bifurcations may occur a t  higher D .  When they do, the solutions to the steady- 
state problem are isolated and odd in number (except a t  discrete critical values of D 
where bifurcations occur) ; for k possible flows, a t  least $(k  - 1 )  of them are unstable. 
For any physically attainable flows, supercritical and subcritical bifurcations are 
impossible. As Benjamin states, these bifurcations ‘belong rather to idealized 
theoretical models whose perfect symmetry allows the exceptional behaviour, and . . . 
they are changed into smooth processes under the influence of the imperfections 
always present in practice ’. For real systems, he states that if two-sided bifurcations 
occur, they will be transcritical, although one-sided bifurcations are likely to 
predominate. 

These principles can be applied to  the known characteristics of flow in curved 
ducts. The two-vortex solution is the primary solution, while the four-vortex 
solution appears a t  a bifurcation point which, for ducts of circular cross-section, 
appears to be a t  around D = 956. The stability of these solutions has been examined 
only superficially for circular ducts (Winters & Brindley 1984), and even these results 
may be unreliable because of the possible existence of spurious eigenvalues. 
However, both branches may be assumed to  be stable: the primary (two-vortex) 
solution is known to be unconditionally stable, while the fact that convergence to the 
four-vortex solution has been observed both computationally and experimentally 
suggests that it, too, is stable. From the properties listed by Benjamin and 
summarized above it can be concluded that there is at least one additional solution, 
that it is unstable, and that at a bifurcation point at about D = 956 this solution 
joins up with the four-vortex solution ; Winters & Brindley (1984) and Yang & Keller 
(1986a, b )  found this solution computationally. 

The picture is not yet necessarily complete, however, a t  least in part because the 
generic properties deal with transitions as D is increased from small values, where 
there is a unique solution; they are not particularly informative regarding 
bifurcation phenomena a t  higher D .  For instance, whether the bifurcation described 
is transcritical or one-sided depends on what happens a t  higher D .  In addition, there 
may be other one-sided bifurcations from which arise branches not yet known to 
exist. In order to fill in a t  least some of the blanks, we can use Benjamin’s second 
parameter, that describing system boundaries, and use as a starting point a ‘perfect ’ 
system for which supercritical and subcritical bifurcations are possible. Then, by 
changing the system boundaries and the conditions applying there, we can 
continuously add the imperfections that ultimately transform the perfect system 
into the imperfect (physically realizable) one in which we are interesbed. 

Nandakumar & Masliyah (1982) used this result in going from the known four- 
vortex solution in a semicircular duct to  that in a circular one ; they thus went from 
one imperfect situation to another. We use i t  in a different way, starting from the 
perfect problem of developed laminar flow in a curved slit of infinite extent along the 
axis of curvature. The low-D flow here is then just slit Poiseuille flow. At some critical 
D ,  a bifurcation occurs, giving rise to  a periodic structure similar to that in Couette 
flow, associated with Taylor (1923). As Benjamin explains, two periodic structures in 
an infinite domain differing only by a half-period shift must have identical 
properties ; consequently, the bifurcation diagram must, at least at the bifurcation 
point, be symmetric about the primary solution, i.e. supercritical or subcritical. 
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FIQURE 2. Effect on bifurcation structure of deviation from ‘perfect’ problem. Broken line 
represents perfect problem, solid line real problem. (After Benjamin 1978). 

Because the choice of state variables is arbitrary, this symmetry does not necessarily 
persist beyond the bifurcation point. More important is that the symmetry is broken 
by adding an imperfection to  the problem in the form of some ‘stickiness’ along the 
cell boundary; the result is qualitatively similar to that illustrated in figure 2 for 
Benjamin’s algebraic example. Note, however, that the resulting bifurcation diagram 
still resembles that for the perfect problem. 

Steady addition of stickiness corresponds to going in continuous fashion from the 
perfect problem to the corresponding situation with no slip a t  cell boundaries, the 
bifurcation diagram thus going systematically to  that for flow in a curved duct of 
rectangular cross-section. A change in geometry then allows the duct of circular 
cross-section to be obtained. The implementation of this procedure will be described 
in the following sections. 

3. Problem formulation and solution 
3.1. Describing equations 

While the procedure described above forms the framework within which flow 
characteristics will be established, the actual solutions on different branches of the 
bifurcation diagram must still be found by solving the Navier-Stokes equations for 
the respective systems considered. The equations and solution methods will be 
discussed here for curved ducts of circular cross-section ; other geometries were 
treated similarly, and will be discussed briefly as they arise. 

For ducts of circular cross-section, an orthogonal toroidal system of coordinates 
will be used, as shown in figure 3. The system of coordinates is identical to that used 
by most previous investigators, such as Dennis & Ng (1982) and McConalogue & 
Srivastava (1968), and differs from the original one proposed by Dean (1927, 1928a) 
only in the direction of the azimuthal angle. 02 represents the axis around which the 
tube is coiled, C denotes the tube centre, OC = R is the radius of curvature of the tube 
and a its radius. The axial distance is expressed in terms of an angle 13 measured from 
a fixed axial plane and increasing along the direction of the primary flow. The centre 
of the coordinate system is fixed at the tube centre, with the coordinates of any point 
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FIGURE 3. Toroidal coordinate system. 

P denoted by ( r ’ ,  a,  0 )  and corresponding velocity components by (17, V ,  W ) .  The 
flow is caused by a constant axial pressure gradient G = -R-l(i?)pp/a€J). Steady, fully 
developed flow is considered, so that the velocity components are independent of 0 
and of time; the primary (axial) flow is locally rectilinear and the study of the 
secondary flow can be limited to the two-dimensional cross-section. 

Dimensionless variables are introduced by scaling relative to  quantities that 
render the centrifugal terms, driving the secondary flow, of the same order of 
magnitude as viscous and inertial effects : 

aW 2a5 r = - ,  r’ u= -  aU , v=-) aV w = & ) ,  

where v is the kinematic viscosity. A stream function @(r, a )  identically satisfies the 
continuity equation in the limit of negligible curvature, S = ( a / R )  + 0, with 

( 1 )  a V V 

The Navier-Stokes equations in the limit of negligible curvature were originally 
derived by Dean (1927) : 

(3) 

where 
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and D is the Dean number defined as 

with p the dynamic viscosity. The particular variant of Dean number used is the one 
arising naturally from the describing equations and the scaling used. It is equivalent 
to  a Reynolds number multiplied by the square-root of the curvature, with the 
characteristic axial velocity taken as that for fully developed flow in a straight tube 
with the same pressure gradient. 

Like most previous studies, ours is limited to symmetric solutions ; additional 
solutions may exist if this constraint is relaxed, as shown by Winters (1987) for 
rectangular ducts. The boundary conditions imposed by the geometry of the system 
are then no-slip condition a t  the walls: 

symmetry about the central plane of the tube (OC in figure 3) for all velocity 
components 

stream function along the plane of symmetry: 

conditions along plane of symmetry applied a t  tube centre : 

The symmetry along the central plane also allows the reduction of the computational 
domain to the upper semicircular region of the tube cross-section 0 < r < 1, 
O G o l G n .  

3.2. Xolution procedure 

Because the system has boundaries described explicitly in terms of coordinate 
surfaces, global weighted residual methods are suitable for solving the equations ; 
they also have the advantage of providing a continuous function as a solution over 
the entire computational domain. Orthogonal collocation was the procedure selected. 
The basis functions used were Fourier series in the azimuthal direction, due to the 
periodicity of the problem, and Chebyshev polynomials in r ,  in order to  minimize the 
maximum error of the interpolation (Lanczos 1956). The expansions used were of the 
form 

N N M  

i = O  i=o j=o 
w = ( l - - r 2 )  C w 2 i , o ~ 2 i ( ~ ) + ( 1 - ~ 2 )  c C W 2 i + l , 2 , + 1 P 2 i + l ( ~ )  cos (P j+ l ) a )  

N M  

+(1-rr2)r2 2 C w ~ ~ , ~ ~ P ~ ~ ( ~ )  cos(2ja), (12) 
(-0 j=1 

N M  

$ = r ( 1 - W  c z $2i,21+1Pzi(r) s in( (2 j+l )a )  
1-0 1-0 

N M + l  

i-0 j=1 
+r(1-r2)' 2 X $ 2 i + l , z i p 2 i + l ( r )  sin Pja) (13) 
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in order to satisfy the constraints imposed by the boundary conditions and system 
symmetry, where PJr) are Chebyshev polynomials of order k. 

Substitution into the differential equations (3) and (4) and setting the residuals 
equal to zero at a set of collocation points yields an algebraic system of 4(N+ 1)(M+ 1) 
equations, from which the coefficients in the expansions can be found using an 
iterative or a direct technique. The collocation points were chosen as the roots of the 
orthogonal function sets used in the trial solution. Thus the points in the azimuthal 
direction were the roots in (0, TC) of 

cos (2(M+ 1) a )  = 0 (14) 

G ( N + l ) W  = 0. (15) 

and those in the radial direction were the positive roots of 

For a given expansion order the problem is thus reduced to a system of algebraic 
equations of the form 

R(x ,  D )  = 0,  (16) 

where R are the residuals at the collocation points and x the vector of coefficients to 
be calculated. Equation (16) was solved using Newton's method with the termination 
criterion 

where the superscripts denote iteration numbers. Poiseuille flow at low Dean 
numbers represents a suitable initial guess, and zeroth- and first-order continuation 
methods were used to advance in the parameter space D. No convergence problems 
were encountered over the entire range of D considered. Solution branches could be 
followed easily, except in the neighbourhood of singular points, where the 
determinant of the Jacobian vanishes. In  these cases an arclength continuation 
technique (Keller 1977, 1982) was used to follow the turning behaviour of the 
solution branch. 

3.3. Stability 
If the time-dependent terms are retained, the Navier-Stokes equations take the form 

llco < 10-'211x(n)Ilmr (17) 11 X(n+l) - X ( n )  

where time is scaled as r = &/a2. After substitution of the expansions used from (12) 
and (131, the system equations can be written in matrix form as 

ax 
a7 A- = R ( x ,  D), 

where A is a constant non-singular premultiplying matrix. 

becomes, after linearization about the steady state, 
If xo denotes a steady-state solution and d = x--xo a small disturbance, (20) 

By the first Liapunov method (KubiEek & Marek 1983), the steady-state solution is 
stable if all eigenvalues of the matrix A-'(aR/ax) have negative real parts. Changes 
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in sign of eigenvalues can be detected by examining the sign of the determinant, 
except for complex-conjugate pairs. Some caution is needed, though, because the 
numerical method used introduces spurious eigenvalues and even multiple singular 
points (Gottlieb & Orszag 1977). Since the spurious eigenvalues tend to have large 
growth rates with grid refinement, real and spurious eigenvalues were distinguished 
by calculating the eigenvalues for expansions of different order. Those eigenvalues 
that were constant for different orders were classified real and those that changed 
were considered spurious; the latter typically represented only a small fraction of the 
total number. It is important to bear in mind that, since the trial functions (12) and 
(13) satisfy the symmetry conditions (9), (10) and ( l l ) ,  the stability properties 
obtained apply only to stability to symmetric disturbances. Winters (1987) deals 
with asymmetric disturbances in ducts of rectangular cross-section. 

4. Results and discussion 
4.1. Circular ducts 

Steady-state solutions to (3) and (4) were obtained for values of D throughout the 
laminar flow regime, and beyond. The criterion used for determining a suitable order 
of expansion was based on the relative improvement resulting from an increase in 
order, LJ6 ($l- $O))"  r dr d a  F' (22) 

where @' denotes the (N+  1, M )  or (N ,  M +  1) order approximation and $O the (N,  M )  
one. This criterion was found to be more stringent than the corresponding one for the 
axial velocities and hence was used over the whole range of D-values. A typical 
requirement for indicating that the expansion was of sufficiently high order was that 
(22) take a value of the order of The required number of collocation points 
increases with D ,  as would be expected. An expansion with N = 10 and M = 7 proved 
adequate for the parameter space up to D - 5000 and required 2-3 minutes of CPU 
time on a DEC VAX 11/785 for each iteration. Three or four iterations were typically 
needed for the continuation algorithm to satisfy the criterion (17). The rate of 
convergence was quadratic as expected, except in the neighbourhood of singular 
points. 

For small D ,  where Dean's results apply, excellent agreement with his perturbation 
solution was observed for D < 50, with deviations apparent only for D > 70; the 
upper limit of validity of the perturbation solution, as determined by Dean (1928a), 
is D = 96. The order of the expansion needed for a satisfactory approximation in this 
region is small ( N  = 4 and M = 3), and less than one second of CPU time was 
required. At higher Dean numbers the results obtained for the two-vortex solution 
agree with essentially all other reported results, in particular those of McConalogue 
& Srivastava (1968), Collins & Dennis (1975) and Yang & Keller (1986a, b) .  Some 
velocity contours and streamlines are shown in figure 1, with the values of the 
contours labelled and the position of the maximum in axial velocity and the vortex 
centre denoted by an asterisk in the respective diagrams. Our results show the two- 
vortex solution to exist as a stable solution to  the problem for all D in the laminar 
flow region (up to D - 5000). 

The two-vortex solution is the unique, unconditionally stable solution for Dean 
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FIQURE 4. Axial velocity contours and secondary flow streamlines for stable four-vortex solution. 
(a )  D = 1000; ( b )  3000; (c) 5000. 

numbers up to approximately D = 956, where Dennis & Ng (1982) and Nandakumar 
& Masliyah (1982) found a four-vortex solution to appear. Being unaware of the 
direct link between the branches found by Winters & Brindley (1984) and Yang & 
Keller (1986a, b ) ,  we started our continuation scheme on the four-vortex branch 
using an initial guess close to the results of Dennis & Ng (1982) for D = 5000. The 
iterative scheme used to solve (16) converged to a stable solution, which was followed 
down to D = 955.7259, where a singular point was detected. Figure 4 shows some 
representative solutions from that branch ; they agree well with those of Dennis & Ng 
and Nandakumar & Masliyah. 

Traversal of the turning point leads to the third solution, which proved to be 
unstable, as expected from the generic properties described by Benjamin (1978) and 
discussed in 5 2. Characteristic axial velocity profiles and streamlines from solutions 
in this family are shown in figure 5. This solution is also four-vortex in character, but 
different from the stable one in the nature of the vortex near the outer wall of the 
tube. In  the stable solution the vortex area is approximately constant across the 
whole parameter space and the vortex becomes stronger as D increases, whereas on 
the unstable branch the vortex shrinks and weakens as D increases, and the axial 
velocity profiles are similar to those of the two-vortex family. Thus the unstable 
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FIGURE 5. Axial velocity contours and secondary flow streamlines for unstable solution. (a) D = 
955.9; ( b )  1000; ( c )  3000. 

branch seems to be much like the two-vortex solution in character; indeed, Yang & 
Keller ( 1 9 8 6 ~ )  show only a two-vortex secondary flow on this branch. 

Additional refined calculations, performed on a Cray X-MP/48 because of the 
requirements of a bigger system (an expansion of N = 19, M = 16 was required for 
reliable results a t  large D), examined the parameter space for D > 5000 in order to 
explore the relationships between the different branches. No dramatic qualitative 
changes in flow behaviour are observed at  these very high Dean numbers, but 
because the analysis is restricted to symmetric disturbances this result is not 
physically meaningful. It is, however, relevant to the discussion of morphogenesis of 
the bifurcation diagram, in $4.2. The computations showed the primary two-vortex 
solution and the unstable branch to meet a t  a turning point a t  a D-value which 
decreased as more refined grids were used, the value for the largest expansion being 
about 32510. By comparison, Yang & Keller’s (1986a) turning-point Dean number 
increased with grid refinement, their most accurate value for loosely coiled tubes 
being D = 25 146. It is interesting to note that Soh & Berger (1987) were able to find 
only the two-vortex solution even for values of D as high as 30000. As regards the 
stable four-vortex branch, we followed it, too, up to  D - 35000, but saw no 
indication of further turning points, although Yang & Keller found one at  D = 15642 
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FIQUHE 6. Axial velocity contours and secondary flow streamlines for singly unstable branch of 
second solution family. (a )  D = 3100; ( b )  4000; ( c )  5500. 

for their most refined calculations. We are unable to explain this difference ; the most 
useful approach to resolution of the discrepancy is probably further grid refinement 
in their method. 

In  addition to the solution families described thus far, another solution family has 
been located via the morphogenesis characterization described in $4.2.  This family 
consists of two branches and appears to  be unconnected to the three solutions 
described previously, a t  least for values of D up to about 35000. The two branches 
differ in several respects from Yang & Keller’s ( 1 9 8 6 ~ )  fourth and fifth branches, so 
they almost certainly represent different solutions. Both branches are unstable, with 
one branch (characterized by two positive eigenvalues) exhibiting four-vortex 
character, going through a turning point a t  D = 2494.218 and giving rise to another 
unstable branch (one positive eigenvalue) developing more and more two-vortex 
character. Characteristic axial velocity profiles and streamlines for the two branches 
are shown in figures 6 and 7 respectively. To our knowledge this is the first time a 
solution like this has been reported for curved ducts of circular cross-section, 
although Winters (1987) reports a qualitatively similar solution for square ducts (see 
further discussion later). 

A property used in the literature for comparing the two stable solutions is the 
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FIGURE 7. Axial velocity contours and secondary flow streamlines for doubly unstable branch 
of second solution family. (a) D = 3100; ( b )  4000; (c) 5500. 

friction-factor ratio ys/yc ,  where the subscripts s and c denote a straight and a curved 
tube respectively, of the same cross-section and carrying the same flux. Figure 8 
compares values of this quantity calculated from our results with values reported in 
previous studies. Agreement among the different results is very good, with the 
exception, frequently noted previously (e.g. Dennis 1980), of the values calculated by 
Van Dyke (1978). The results of Soh & Berger (1987) reproduced in figure 8 are for 
curvature S = 0.01. A notable feature of the plot is that  very similar values of the 
friction-factor ratio are seen for the various branches coexisting at any given value 
of D. Furthermore, the two stable solution branches seem to meet at the critical 
value D = 956 at which the four-vortex solution ceases to exist ; the same is true for 
the new family (two unstable branches), which seems to  join the primary branch at 
D = 2494. These observations are, however, misleading, and indicate that the 
friction-factor ratio is an inappropriate parameter for differentiating among different 
solution branches. 

A more useful approach is to use as the state function the value of one of the 
velocity components at a particular point in the computational domain. Figure 9 
shows, for the physically meaningful range of D (< SOOO), a bifurcation diagram 
based on the radial velocity at r = 0.9, a = 0, together with the secondary flow 
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D 

FIGIJRE 8. Comparison of friction-factor ratios. -, Primary solution branch ; --, four-vortex 
solutions (first solution family); ---, new solution family. 0 ,  +. Dennis & Ng (1982) two- and 
four-vortex solutions respectively; , Soh & Berger (1987) two-vortex solution (6 = 0.01); 0, Van 
Dyke (1978) ; X, A, Yang & Keller (l986a) stable two- and four-vortex solutions respectively. 

FIGURE 9. Bifurcation diagram for curved circular ducts, with radial velocity a t  r = 0.9 on plane 
of symmetry as state variable. Secondary flow streamlines are shown on each branch. -, Stable 
solution ; --, unstable solution ; ---, doubly unstable solution. 

streamlines representative of the different branches. The different nature of the four- 
vortex families can be easily distinguished, and the figure displays the qualitative 
features of bifurcation diagrams presented by Benjamin (1978). It also reproduces 
and complements some of the qualitative features of the bifurcation diagrams of 
Yang & Keller (1986a), but since they reported their results in terms of the friction- 
factor ratio, a more detailed comparison is not possible. 
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Many important features of the bifurcation diagrams can (and were, by Yang & 
Keller 1986a, b)  be found directly by continuation methods. These methods do not, 
however, provide an assurance that all possible solution branches have been found ; 
in particular, one-sided bifurcations giving rise to branches not, linked to the primary 
solution may be present, as is indeed the situation pictured in figure 9. In  order to 
gain greater insight into possible bifurcation patterns, we examine the morphogenesis 
of the bifurcation structure using the results of Benjamin (1978), as discussed in 
$2. 

4.2. Morphogenesis of bifurcation structure 
The analysis begins with the perfect problem of pressure-driven viscous azimuthal 
flow in a curved slit of infinite extent perpendicular to the flow direction. The 
stability of this flow was first studied by Dean (1928 b) in the narrow-slit limit and 
was later extended for finite-gap problems. Extensive reviews as well as the most 
important literature references can be found in Chandrasekhar (1961) and Drazin & 
Reid (1981). 

Poiseuille-like flow is the unique, unconditionally stable solution for small D. As 
the value of Dean number increases, there exist,s a critical D where the Poiseuille flow 
profile bifurcates to a cellular structure such as that observed in Couette flow (Taylor 
1923). The critical values of D and the natural wavelength of the cells have been 
dttermined by solving the perturbation equations for axisymmetric disturbances 
(see e.g. Reid 1958). Within the cellular structure, a pair of adjacent cells represents 
a rectangular ‘duct ’, which provides the basis for our subsequent computations. The 
lateral duct boundaries, a t  which there is no slip a t  present, are along the line of 
symmetry where flow is inward, by analogy with the situation in curved ducts (figure 
1). We solved the system equations for rectangular ducts of small curvature (Ward- 
Smith 1980) using orthogonal collocation with Chebyshev polynomials in both the 
radial and axial directions as basis functions. For symmetry reasons the 
computational domain is that of one cell of the secondary flow. 

The natural intermediate stage between the perfect problem and the situation of 
ultimate interest, a duct of circular cross-section, is a duct of square cross-section. 
We begin, however, with a rectangular duct of aspect ratio 1.592, which is that 
given by the stability analysis of the perfect problem as the natural wavelength of 
the cell at the bifurcation point. This problem has a simpler bifurcation structure 
than does that in a square duct, because of a transcritical bifurcation a t  an aspect 
ratio of 1.426, noted by Winters (1987). The bifurcation structure for the square duct 
is consequently easier to understand if the most important features of that for the 
duct of aspect ratio 1.592 is described first. 

The linear stability analysis results (Dean 19286; Drazin & Reid 1981) were 
reproduced by the numerical scheme, which was then used to extend the bifurcation 
diagram beyond the first bifurcation point. The picture that emerges, for the 
conceptual flow through a single ‘duct’ (without slip on the cell boundaries) of 
constant aspect ratio, is shown in figures 10 and 11 ; the radial velocity a t  a specific 
point on the cell axis of symmetry is used as the flow parameter, as in figure 9 for the 
circular ducts. The bifurcation from the (primary) Poiseuille flow to the cellular 
structure (stable two-vortex secondary flow) is a t  D = 53.88. Here the Poiseuille flow 
becomes unstable, remaining so until D = 75.95, where a second bifurcation gives rise 
to an unstable four-vortex solution pattern, followed by a third bifurcation to a six- 
vortex solution, a t  D = 123.95. At still higher D additional bifurcations are observed, 
with multiple vortices, but we have not attempted to characterize them further. As 
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FIGURE 10. Bifurcation diagram for perfect problem for aspect ratio of 1.592. Region around D = 
94 is expanded in inset. Solid and broken lines denote stable and unstable solutions respectively, 
and dots denote bifurcation points. Labels on branches refer to streamlines in figure 11 ; a min&- 
sign subscript denotes phase shift. 
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FIGIJRE 11. Secondary flow streamlines for branches labelled on perfect-problem bifurcation 
diagrams (figures 10, 13 and 14). 
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FIGURE 12. Bifurcation structure for rectangular duct with stickiness parameter = 0.1125. Smaller 
isola disappears with small increase in parameter, and larger one when parameter % 0.31. 

noted in $ 2 ,  a half-period shift in the two-vortex solution leaves an equivalent flow 
structure, so that two branches emerge symmetrically from the first bifurcation 
point (Benjamin 1978) ; a quarter-period shift leads to the same conclusion for the 
second bifurcation point, and so on. 

The branches emerging from the first bifurcation point give rise to a closed curve, 
with a pair of turning points at D = 123.64 beyond which the branches continue as 
unstable solutions with four vortices, but with much two-vortex character (the 
additional vortices are weak). The new vortices appear near the outer wall, grow and 
finally occupy half the domain a t  another bifurcation point a t  D = 94.03 (expanded 
in figure lo), wherc the closed two-vortex curve meets one four-vortex family arising 
from the bifurcation a t  D = 75.95. The latter then continues as a stable four-vortex 
solution. The other four-vortex solution is unstable up to a t  least D = 500, while the 
six-vortex branches are both stable at least this far; however, as the subsequent 
discussion indicates, the unstable four-vortex branch seems to meet one of the six- 
vortex branches at  some point. Note that because of the choice of state variable in 
figure 10, crossing of branches in the figure does not necessarily imply a bifurcation 
point ; bifurcation points are labelled explicitly. 

Next, with the aspect ratio fixed, the boundary conditions along the lateral walls 
were changed by adding ‘stickiness’; this was done by introducing a parameter that, 
in going continuously from 0 to 1, changed the boundary conditions from slip to no 
slip. The introduction of stickiness breaks the symmetry of the perfect problem, as 
described by Benjamin (1978); figure 12 shows the decoupled solutions when the 
parameter describing stickiness has the value 0.1 125. There are now at  least three 
distinct solution families. The primary solution a t  low D now is the one having a two- 
vortex secondary flow pattern; it develops from the Poiseuille flow and from the 
upper part of the two-vortex solution curve of the perfect problem, without the 
existence of any bifurcation points. The stable four-vortex and the intervening 
unstable solution a t  larger D are also part of this family. The second solution family 
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FIGURE 13. Primary bifurcation diagram for perfect problem for square duct, showing only 
branches arising from the primary solution. Different line types are for clarity, and do not reflect 
stability characteristics. Labels on branches labels refer to streamlines in figure 11 ; a minus-sign 
subscript denotes phase shift. 
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is an isola representing the lower branch of the two-vortex solution and the unstable 
part of the lower four-vortex solution of the perfect problem. The third family is also 
an isola, arising in similar fashion from the unstable four-vortex and one of the six- 
vortex branches, an observation which prompted the remark in the previous 
paragraph regarding the likelihood that these two branches meet even in the perfect 
problem. The primary branch is relatively insensitive to changes in the parameter 



Flow in curved ducts : bifurcation structure for stationary ducts 143 

4 10 

3 !L D 

FIGURE 15. Schematic diagram showing decoupling in square ducts resulting from addition of 
stickiness. 

describing stickiness, but the isolae shrink as the stickiness increases and disappear 
before the no-slip limit is reached. The first isola vanishes when the stickiness 
parameter exceeds by a small amount that used in preparing figure 12, while the 
second persists to beyond 0.31. 

Our conjecture is that isola formation by branches differing by one pair in vortex 
number continues a t  higher vortex numbers, and that most of these isolae vanish by 
the time the no-slip limit is reached. Thus, in the no-slip limit (curved duct, aspect 
ratio 1.592, with solid walls) there appears to exist only one solution family, 
exhibiting two-vortex character up to a turning point where it becomes unstable and 
develops mixed two- and four-vortex character. After another turning point the 
solution is stable again, and this four-vortex branch exists up to the upper limit of 
the parameter range (laminar flow region). This result is qualitatively consistent 
with the most 'important features previously observed in experimental and theoretical 
studies of flow in rectangular ducts, e.g. Cheng & Akiyama (1970), Joseph et al. 
(1975), De Vriend (1981), Shanthini & Nandakumar (1986) and Winters (1987). 

For square ducts the morphogenesis of the bifurcation structure was also 
examined with the perfect problem as the starting point, but now with the constraint 
of unit aspect ratio imposed for the formation of secondary flow cells. The bifurcation 
structure is much more complex than that for an aspect ratio of 1.592, the major 
qualitative differences being the existence, at relatively low D ,  of secondary 
bifurcation points, i.e. on the solution branches exhibiting cellular secondary flow 
structure. Hence, in addition to the two-, four- and six-vortex solution families 
developing from the Poiseuille solution, solutions exhibiting 2 + 2 and 4 + 4 vortex 
structure are seen. Additional multiple-vortex solutions also arise from the Poiseuille 
flow beyond the six-vortex bifurcation point. The results are summarized in figures 
13 and 14, showing the bifurcations from the primary Poiseuille solution and the 
secondary bifurcations respectively ; corresponding secondary flow streamlines are 
shown in figure 11. 
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FIGURE 16. Bifurcation diagram for flow in square curved ducts: -, stable solution; ---, 

unstable solution; ---, doubly unstable solution. Labels on branches refer to figure 17. 

The introduction of stickiness decouples the solutions, as shown qualitatively (for 
clarity) in figure 15, with the different solution branches displaying different forms 
of behaviour as stickiness is increased. Branches 2, 4, 5,  6 and 8 form isolae and then 
vanish before the no-slip limit is reached, while branches 7, 9 and 10 move rapidly 
to regions of high Dean number (> 5000). The only solutions remaining in the Dean- 
number range of usual interest are shown in figures 16 and 17, which include a new 
family in addition to that obtained for an aspect ratio of 1.592; this is a consequence 
of the transcritical bifurcation a t  an aspect ratio of 1.426, reported by Winters 
(1987). The new family consists of stable, unstable and doubly unstable (two positive 
eigenvalues) branches, which arise from the secondary bifurcations in the perfect 
problem. The family comprises a stable two-vortex solution linked through a turning 
point a t  either end to additional solutions. At one end the link is to an unstable four- 
vortex solution, and at the other to a series of folds, on which most of the solutions 
are characterized by multiple vortices. As figure 17 shows, the streamlines of these 
solutions are quite different from those in the first family, even when the number of 
secondary flow vortices is the same. 

The qualitative and quantitative agreement with the calculations of Winters 
(1987) is very good. Winters reports results only up to D - 2000 and hence does not 
include the entire structure of the isolated solution family, but as shown in table 1 
the turning points common to his work (for curvature 0.02) and ours are within about 
5% of each other. Since Winters does not show the axial velocity profiles or 
secondary flow streamlines for the second family of solutions, a comparison with the 
corresponding streamlines shown in figure 17 is not possible. An additional aspect is 
that Winters considers asymmetric solutions, and finds the second family to be 
joined to the first by an asymmetric solution branch, which is obviously absent in our 
system. He also finds the four-vortex solution on the first family to be unstable to 
asymmetric disturbances. 

What now remains is to go from a square geometry to a circular one. For this a 
curvilinear orthogonal coordinate system was used that is characterized by a 
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FIGURE 17. Secondary flow streamlines for flow in a curved duct of square cross-section, for 
branches labelled in figure 16. Values ofD:  ( a )  450; ( b )  642; (c) 2215; (d )  2900; (e) 1763; (f) 1953; 
(9) 1918; (h )  2386; ( i )  2810. 

Branches 

ab 
bc 
de 
ef 
fs 
gh 
hi 

D (this D (Winters 
work) 1987) 

662.132 683.26 
562.097 579.25 

1073.090 11  12.83 
2314.055 
1779.834 
2396.406 
2217.626 

TABLE 1 .  Turning points for square ducts. Branch labels refer to figure 17 .  

parameter, p, giving rise to different cross-sections with circular and square 
geometries as the two limits. The system equations were written in terms of the 
coordinates 

f =  ( “ 2 + y 2 - p X 2 y 2 ) f  (23) 

and (24) 
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and solved using an expansion similar to  that of (12) and (13). Continuation in the 
shape parameter allows a smooth transition between the square and circular tube 
limits, but the nature of the coordinate system slows convergence significantly and 
also requires an expansion of high order for geometries near the rectangular limit. 
The continuation steps therefore have to be very small near the limit of a 
computational domain with sharp corners. The result of the transformation is seen 
in a comparison of figures 16 and 9, which are structurally similar. However, the new 
solution family is much simpler in circular ducts than in square ducts, and neither 
of the two solutions is stable even to symmetric disturbances. A notable trend is that 
the turning point between the primary two-vortex and the unstable solution rapidly 
moves to higher D as the cross-section approaches circularity, which makes it difficult 
to detect by continuation on the primary solution branch. The other two turning 
points remaining move to higher D much more slowly as the geometry approaches 
circularity. 

5. Concluding remarks 
While the bifurcation structures of flows in curved ducts of various cross-sections 

have become clearer in recent years, several issues have remained unresolved, 
particularly for ducts of circular cross-section. The results presented here appear to 
resolve some of these issues for ducts of small curvature. In  particular, the stability 
to symmetric disturbances has been characterized and an additional family of 
solutions has been identified. Perhaps more important is that Benjamin's (1978) well- 
known results have been shown to be useful not just for coordinate transformations 
(e.g. Nandakumar & Masliyah 1982), but particularly for the utility of the perfect 
problem as a link between solution families that  are not linked in a real, imperfect 
situation. Unresolved issues include the possibility of asymmetric solutions and the 
response to asymmetric disturbances, and the effects of curvature. 
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access to the Pittsburgh Supercomputing Center, is gratefully acknowledged. 

R E F E R E N C E S  

BARUA, S. N. 1963 On secondary flow in stationary curved pipes. &. J .  Mech. Appl.  M a t h  16, 

BENJAMIN, T. B. 1978 Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc. 

BERGER, S. A., TALBOT, L. & YAO, L.-S. 1983 Flow in curved pipes. A n n .  Rev. Fluid Mech. 15, 

CHANDRASEKHAR, S .  1961 Hydrodynamic and Hydromagnetic Stability, Chapter 8. Oxford 
University Press. 

CHENG, K. C. & AKIYAMA, M. 1970 Laminar forced convection heat transfer in curved rectangular 
channels. Zntl J. Heat Mass Trans. 13, 471490. 

CHENG, K .  C., INABA, T. & AKIYAMA, M. 1985 Flow visualization studies of secondary flow 
patterns and centrifugal instability in curved circular and semicircular pipes. In  Flow 
Visualization 111 (ed. W. J. Yang), Third Intl Symp .  on Flow Vi'isualization, 1983, A n n  Arbor, 
Michigan, pp. 531-536. Springer. 

61-77. 

R. SOC. LO&. A 359, 1-26. 

46 1-51 2. 



Flow in curved ducts : bifurcation structure for  stationary ducts  147 

CHENQ, K. C., NAKAYAMA, J. & AKIYAMA, M. 1979 Effect of finite and infinite aspect ratios on flow 
patterns in curved rectangular channels. In Flow Visualiza6ion (ed. T. Asanuma), Intl Symp. 
on Flow Visualization, 1977, Tokyo, Japan, pp. 181-186. Hemisphere. 

COLLINS, W. M. & DENNIS, S. C. R.  1975 The steady motion of a viscous fluid in a curved tube. 
&. J .  Mech. Appl.  Maths 28, 133-156. 

DEAN, W. R. 1927 Note on the motion of fluid in a curved pipe. Phil. Mag. 4, (7) 208-223. 
DEAN, W. R. 1928a The streamline motion of fluid in a curved pipe (second paper). Phil. Mag. 5 ,  

DEAN, W. R. 1928b Fluid motion in a curved channel. Proc. R.  Soc. Lond. A 121, 402420. 
DENNIS, S. C. R .  1980 Calculation of the steady flow through a curved tube using a new finite- 

DENNIS, S. C. R. & NG, M. 1982 Dual solutions for steady laminar flow through a curved tube. 

DE VRIEND, H. J .  1981 Velocity redistribution in curved rectangular channels. J .  Fluid Mech. 107, 

DRAZIN, P. G. & REID, W. H.  1981 Hydrodynamic Stability, Chapter 3. Cambridge University 

GOTTLIEB, D. & ORSZAG, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and 

ITU, H. 1987 Flow in curved pipes. Japan. Soc. Mech,. Engrs Intl J .  30, 543-552. 
JOSEPH, B. ,  SMITH, E. P. & ADLER, R.  J.  1975 Numerical treatment of laminar flow in helically 

coiled tubes of square cross section. AZChE J .  21, 965-974. 
KELLER, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In 

Applications of Bifurcation Theory (ed. P. H. Rabinowitz), pp. 35S384. Academic. 
KELLER, H. B. 1982 Continuation methods in computational fluid dynamics. In Numerical 

Methods and Physical Aspects of Aerodynamic Flows (ed. T .  Cebeci), pp. 3-13. Springer. 
KUBEEK, M. & MAREK, M .  1983 Computational Methods in Bifurcation Theory and Dissipative 

Structures. Springer. 
LANCZOS, C. 1956 Applied Analysis, Chapter 7 .  Prentice-Hall. 
MASLIYAH, J .  H. 1980 On laminar flow in curved semicircular ducts. J .  Fluid Mech. 99, 

46-79, 
MCCONALOOUE, D. J. & SRIVASTAVA, R.  S. 1968 Motion of a fluid in a curved tube. Proc. R. SOC. 

Lond. A 307, 37-53. 
NANDAKUMAR, K.  & MASLIYAH, J. H. 1982 Bifurcation in steady laminar flow through curved 

tubes. J .  Fluid Mech. 119, 475490. 
NANDAKUMAR, K. ,  MASLIYAH, J. H. & LAW, H.-S. 1985 Bifurcation in steady laminar mixed 

convection flow in horizontal ducts. J .  Fluid Mech. 152, 145-161. 
REID, W. H. 1953 On the stability of viscous flow in a curved channel. Proc. R.  Soc. Lond. A 244, 

18G198. 
SHANTHINI, W. 81 NANDAKUMAR, K. 1986 Bifurcation phenomena of generalized newtonian fluids 

in curved rectangular ducts. J .  Non-Newtonian Fluid Mech. 22, 35-60. 
SOH, W. Y.  1988 Developing fluid flow in a curved duct of square cross-section and its fully 

developed dual solutions. J .  Fluid Mech. 188, 337-361. 
SOH, W. Y. & BERGER, S. A. 1987 Fully developed flow in a curved pipe of arbitrary curvature 

ratio. Intl J .  Numer. Meth. Fluids 7, 733-755. 
TAYLOR, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. 

Trans. R. Soc. Lond. A 223, 289-343. 
VAN DYKE, M. 1978 Extended Stokes series: laminar flow through a loosely coiled pipe. J .  FZuid 

Mech. 86, 12S145. 
WARD-SMITH, A. J. 1980 Internal Fluid Flow, Chapter E. Clarendon. 
WINTERS, K. H. 1987 A bifurcation study of laminar flow in a curved tube of rectangular cross- 

WINTERS, K.  H. & BRINDLEY, R. C. G. 1984 Multiple solutions for laminar flow in helically-coiled 

(7) 673-695. 

difference method. J .  Fluid Mech. 99, 449-4.67. 

Q .  J .  Mech. Appl.  Maths 35, 305-324. 

423439. 

Press. 

Applicutions. STAM. 

section. J .  Fluid Mech. 180, 343-369. 

tubes. A E R E  Rep. 11373, AERE Harwell, UK. 



148 

YANa, Z.-H. & KELLER, H. B. 1986a Multiple laminar flows through curved pipes. Appl. Num. 

YANa, Z.-H., KELLER, H. B. 19863 Multiple laminar flows through curved pipes. In Proc. Tenth 
Intl Conf. onNumericalMethods inFluid Dynamics, Beijjing 1986 (ed. F. G. Zhuang, Y. L. Zhu), 
pp. 612-676. Springer. 

P .  Daskopoulos and A .  M .  Lenhoff 

dlaths 2, 251-271. 




